Statistical Methods Lab ( R Language) PCCBL308 Course Details and Syllabus

 


STATISTICAL METHODS LAB(R LANGUAGE)

 

Course Code

PCCBL308

CIEMarks

50

Teaching Hours/Week(L:

T:P:R)

0:0:3:0

ESEMarks

50

Credits

2

Exam Hours

2Hrs.30Min.

Prerequisites(if any)

None/

(Coursecode)

Course Type

Lab

 

Course Objectives:

 

1.The statistical methods lab is intended to impart the elementary concepts of R and apply various statistical techniques to a variety of data. This course provides the learners with hands-on experience in R and do Statistical analysis, statistical testing, and graphical analysisandbuildspredictionmodels.Thecourseenablesthestudentstogetanexposure to R programming and use proper methods to analyze and interpret data effectively.

Expt.

No.

EXPERIMENTS

1

Familiarization of R environment and R Studio. Installing and using packages.

 

2

Practice basic R input/output commands and create simple R programs using variables

/mathematical operations.

3

 Learn control statements in R,(if,switch,for,while,repeat,break,next)

4

 Write R programs using functions (Functions, Recursive Functions)

 

5

Learn to use Data Structures in R(strings,vectors,lists,matrix,arrays,dataframes, factors)

 

6

 

Plotting in R(linegraph,scatterplots,barplots,piecharts,histogram,boxplots,strip charts)


 

7

Data Manipulation using R(Rdatasets,basic summary statistics,reading/writing csv and excel files)


 

8

 

Measures of variability and correlation/covariance in R(range,variance,standard deviation ,covariance/correlation)

9

 

Plotting of Probability Distribution Using R Functions(Normal,Binomial,Poisson)

10

Hypothesis testing using R(t-test,chisquare test,Wilcoxon Signed Rank Test)

 

11

 

Regression in R(linear,multiple,logistic)


12

Time series Analysis in R(ARIMA)

 

Course Assessment Method(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks(CIE):

 

 

 

 

Attendance

Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports and  Record

(ContinuousAssessment)

 

Internal Examination

 

 

Total

5

25

20

50

 

 

End Semester Examination Marks(ESE):

 

Procedure/ Preparatory work/Design/

Algorithm

Conduct of experiment/ Execution of work/ troubleshooting/

Programming

Result with valid inference/ Quality of

Output

 

Viva voce

 

 

Record

 

 

Total

10

15

10

10

5

50

      Submission of Record:Students shall be allowed for the end semester examination only upon submitting the duly certified record.

    Endorsement by External Examiner:The external examiner shall endorse the record


Course Outcomes(COs)

 

At the end of the course students should be able to:

 

 

Course Outcome

Bloom’s Knowledge

Level(KL)

 

CO1

Perform operations on data using various data structures and programming constructs within R

K3

CO2

Model graphical representation of data and analyze

K3

 

CO3

Perform and interpret different probability distribution and hypothesis testing using R

K3

CO4

Build Regression models for data analysis

K3

CO5

Build Timeseries models for data analysis

K3

Note:K1-Remember,K2-Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create

 

CO-POMapping(Mapping of Course Outcomes with Program Outcomes)

 

 

PO1

PO2

PO3

PO4

PO5

PO6

PO7

PO8

PO9

PO10

PO1

1

PO12

CO1

3

3

3

3

3

 

 

 

 

 

 

3

CO2

3

3

3

3

3

 

 

 

 

 

 

3

CO3

3

3

3

3

3

 

 

 

 

 

 

3

CO4

3

3

3

3

3

 

 

 

 

 

 

3

CO5

3

3

3

3

3

 

 

 

 

 

 

3

1:Slight(Low),2:Moderate(Medium),3:Substantial(High),-:NoCorrelation

 

TextBooks

Sl.No

TitleoftheBook

NameoftheAuthor/s

Nameofthe

Publisher

Edition

andYear

1

Hands-on Programming with R

Garrett Grolemund

O'ReillyMedia

 

 

2

R for Everyone:Advanced Analytics and Graphics

 

Jared P.Lander

Addison-Wesley

Data&Analytics Series

2nd Edition


ReferenceBooks

Sl.No

Title of the Book

Name of the Author/s

Name of the

Publisher

Edition

and Year

1

Probability and Statistics for

Engineers

I.R.Miller,J.E.Freund

and R.Johnson.

 

4th

Edition

2

The Analysis of TimeSeries:

An Introduction

Chris Chatfield

 

 

3

Introduction to Linear

Regression Analysis

D.C.Montgomery

&E.Peck

 

 

4

Introduction to the Theory of

Statistics

A.M.Mood,F.A.

Graybill &D.C. Boes.

 

 

5

Applied Regression Analysis

N.Draper&H.Smith

 

 

6

Fundamentals of

Statistics(Vol.I&Vol.II)

A.Goon,M.Gupta

and B.Dasgupta

 

 

Continuous Assessment(25Marks)

1.    Preparation and Pre-Lab Work(7Marks)

 

  Pre-LabAssignments:Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

  UnderstandingofTheory:Evaluationbasedonstudents’preparationandunderstandingofthe theoretical background related to the experiments.

 

2.    Conduct of Experiments(7Marks)

 

 Procedure and Execution:Adherence to correct procedures,accurate execution of experiments, and following safety protocols.

  Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.

  Teamwork:Collaboration and participation in group experiments.

 

3.    Lab Reports and Record Keeping(6Marks)

 

  Quality ofReports:Clarity,completenessandaccuracyoflabreports.Properdocumentation of experiments, data analysis and conclusions.

  TimelySubmission:Adheringtodeadlinesforsubmittinglabreports/roughrecordand maintaining a well-organized fair record.


4.    VivaVoce(5Marks)

 

  Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

FinalMarksAveraging:Thefinalmarksforpreparation,conductofexperiments,viva, and record are the average of all the specified experiments in the syllabus.

EvaluationPatternforEndSemesterExamination(50Marks)

 

1.      Procedure/PreliminaryWork/Design/Algorithm(10Marks)

 

 ProcedureUnderstandingandDescription:Clarityinexplainingtheprocedureand understanding each step involved.

 Preliminary Work and Planning:Thoroughness in planning and organizing materials/equipment.

 AlgorithmDevelopment:Correctnessandefficiencyofthealgorithmrelatedtothe experiment.

  Creativityandlogicinalgorithmorexperimentaldesign.

 

                     2.      ConductofExperiment/ExecutionofWork/Programming(15Marks)

 

  SetupandExecution:Propersetupandaccurateexecutionoftheexperimentorprogramming task.

3.      ResultwithValidInference/QualityofOutput(10Marks)

 

  Accuracy of Results:Precisionand correctnessof theobtainedresults.

  Analysis and Interpretation:Validityofinferencesdrawnfromtheexperimentorqualityof program output.

 

4.      Viva Voce(10Marks)

 

  Ability to explain the experiment,procedure results and answer related questions

  Proficiency in answering questions related to theoretical and practical aspects of the subject.

5.      Record(5Marks)

 

  Completeness,clarity,and accuracy of the lab record submitted


 

Comments

Popular posts from this blog

Statistical Methods Lab ( R Language) PCCBL308 Semester 3 KTU BTech CB 2024 Scheme - Dr Binu V P

t -test